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On a Si�111� surface, which is covered with the 1�1 structure at high temperature, the 7�7 structure
appears when temperature is lower than the structural transition temperature �860 °C�. On the vicinal face, the
7�7 structure spreads from the upper side of the step edge. The diffusion coefficient on the 1�1 structure is
larger than that on the 7�7 structure. During growth, due to the difference in the diffusion coefficient, step
wandering occurs and grooves perpendicular to the steps are formed. When the direct electric current is added
parallel to the step, the grooves are tilted. In this paper, with taking account of the drift of adatoms caused by
the direct current, we study the possibility of tilting of the grooves.
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A Si�111� surface is covered with the 1�1 structure at
high temperature. When temperature is lower than the struc-
tural transition temperature ��860 °C�, the 1�1 structure is
reconstructed and the 7�7 structure appears. On the vicinal
face near the transition temperature, the 7�7 structure is
spread from the upper side of the step, and the two structures
coexist in a terrace �1�. From a previous experiment �2�, the
product of the diffusion coefficient Ds and the equilibrium
adatom density ceq on the 7�7 structure is smaller than that
on the 1�1 structure.

On the vicinal surface, there are two types of dynamical
step instabilities, step wandering and step bunching. The step
wandering is the instability for step deformation along the
step, and the step bunching is that for the interstep distance.
During growth �3�, Hibino and co-workers observed the in-
phase step wandering near the transition temperature. Due to
the in-phase step wandering, grooves perpendicular to the
steps appear. When direct electric current is parallel to steps,
the grooves are tilted.

The step wandering on the vicinal face with the two struc-
tures has been studied �4,5�. When the difference in equilib-
rium adatom density between the two structures is neglected
and that in the diffusion coefficient is taken into account, the
step wandering occurs and the grooves are formed during
growth. However, the effect of the drift, which is considered
to be caused by the current, on tilting of grooves has not
been studied.

In this paper, bearing the growing Si�111� vicinal face
with the two structures in mind, we study the possibility of
tilting of grooves by the drift. We take account of the differ-
ence in diffusion coefficient, and use the model of Kato et al.
�5�, in which the ratio of the widths between two structures
can be changed.

We consider a vicinal face, where the x direction is par-
allel to the step and the y direction is toward the step-down
direction �Fig. 1�. When we neglect the evaporation of ada-
toms, the diffusion equation, which the adatom density c�r , t�
obeys, is given by

�c�r,t�
�t

= − � · j�r,t� + f , �1�

where f is the impingement of adatoms and j�r , t� is the
adatom current on the surface. When the drift of adatoms is
parallel to the x axis, the adatom current is given by

j�r,t� = − Ds�r���c�r,t� −
Fdc�r,t�

kBT
êx� , �2�

where Ds�r� is the local diffusion coefficient, and Fd is the
force to cause the drift. Ds�r�=D1 on the 1�1 structure on
the lower side of a step and Ds�r�=D2 on the 7�7 structure
on the upper side of a step.

From experiment �2�, the diffusion coefficient on the
1�1 structure is larger than that on the 7�7 structure. Then,
we assume D1 is larger than D2.

The structural boundary advances with absorbing adatoms
and recedes with releasing adatoms �6�, which is similar to
the step. When the structural boundary moves, the number of
adatoms for the structural boundary to use is much fewer
than that for the step �7�. However, following Kato et al. �5�,
we neglect the difference in properties between step and
structural boundary, and treat a structural boundary as a step.
At steps and structural boundaries, we assume that the ada-
tom densities are in equilibrium: �c�s�b�=ceq

s�b�, where s�b� in-
dicates the step �the structural boundary� position. The ap-
proximation implies an infinite kinetic coefficient. We should
take account of the effect of kinetic coefficient, but for sim-
plicity, we use the assumption in this paper. The equilibrium
adatom density ceq

s at the step and that ceq
b at the structural

boundary are given by ceq
s�b�=ceq

0 �1+��̃�s�b� /kBT�, where ceq
0
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FIG. 1. A Si�111� vicinal face near 1�1↔7�7 structural tran-
sition temperature.
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is the equilibrium adatom density at the isolated step, � is

atomic area, �̃ is step stiffness, and �s�b� are the curvatures.
By solving the diffusion equation, Eq. �1�, with boundary

conditions in the quasistatic approximation ��c /�t=0�, the
velocity Vs of step and that Vb of structural boundary are
given by Vs�b�=���j�s�b�−− �j�s�b�+� ·ns�b�, where +�−� indicate
the lower �upper� side of the step and structural boundary,
and ns�b� is the normal vector of the step �structural bound-
ary� toward the step-down direction.

We carry out linear stability analysis for the wandering
instability. We assume that steps and structural boundaries
are straight. When they are equidistant with distance l, the
mth position �m

0 �t� of step and �m
0 �t� of structural boundary

are given by �m
0 �t�	Vs

0t+2ml, �m
0 �t�	Vb

0t+ �2m+1�l. The
adatom density c1

0�y� in the region with large diffusion coef-
ficient D1 and c2

0�y� in the region with small diffusion coef-
ficient D2 are given by

c1
0�y� = −

f

2D1
�y − �m

0 �2 +
fl

2D1
�y − �m

0 � + ceq
0 , �3�

c2
0�y� = −

f

2D2
�y − �m

0 �2 −
fl

2D2
�y − �m

0 � + ceq
0 , �4�

where c1
0�y� is defined in �m

0 �y��m
0 and c2

0�y� is defined in
�m

0 �y��m+1
0 . The velocities, Vs and Vb are given by Vs

0

=Vb
0= fl.
We give sinusoidal perturbations with the wave number k

to the steps and the structural boundaries. When the pertur-
bation to the mth step is ��m�t�eikx and that to the mth struc-
tural boundary is ��m�t�eikx, due to the fluctuations, the ada-
tom density c1�r , t� is modified and given by c1�r , t�=c1

0�y�
+�c1�r , t�eikx. The boundary conditions are given by

��c1��m
0 +
dc1

0

dy



�m
0
��m�t� = k2	��m�t� , �5�

��c1��m
0 +
dc1

0

dy



�m
0
��m�t� = k2	��m�t� , �6�

where 	=�ceq
0 �̃ /kBT. By considering the similar equations

for c2�r , t�, we obtain the derivative equations for �m�t� and
�m�t�. When �m�t� and �m�t� are expressed as �m�t�
=��t�ei�2m+1�
l and �m�t�=��t�ei2m
l, the derivative equation
for ��t� is given by

d�

dt
=

ifl�k sin 
l

sinh �kl
� + i

�Ds	�kk
2

sinh �kl
� sin 
l

+
2Ds	�kk

2

sinh �kl
�� cos 
l − � cosh �kl� , �7�

where �Ds=D1−D2, Ds= �D1+D2� /2, and 
 is the shift of
phase between the step and the structural boundary. �k is
given by �k=�k2+ ikfd with fd=Fd /kBT. We obtain the de-
rivative equation for ��t� by replacing ��t� to ��t� and D1 to
D2.

From the derivative equations, the amplification rates of
the fluctuations are given by

� = −
2	k2Ds�k

tanh �kl
�

�k

sinh �kl
��	k2�Ds sin 
l�2 + h�k,
� ,

�8�

where h�k ,
� is expressed as h�k ,
�= �2	k2Ds cos 
l
+ ifl sin 
l�2. The relation between � and � is given by �
=�� when the amplification rate is =+, and �=−�� when
the amplification rate is =−, where � is given by

� =� ifl sin 
l + 	k2�2Ds cos 
l + i�Ds sin 
l�
ifl sin 
l + 	k2�2Ds cos 
l − i�Ds sin 
l�

. �9�

When the impingement rate is small, the amplification
rates are expressed as

� =
�ifDs�kl sin 
l cos 
l

sinh �kl�Ds
2 − D1D2 sin2 
l

− 2Ds
	k2�k

sinh �kl
�cosh �kl � 1 �

4D1D2 sin2 
l

2Ds
2 � .

�10�

If the wavelength of the fluctuation is long and the shift of
the phase is small, � are approximated as

+ = i�f
 − 	Dsfdk3�l +
fdf
l3

3!
k − 	Dsl�k2 +

D1D2
2

Ds
2 �k2,

�11�

− = − i� f
 +
	Dsfd

3
k3�l − � fdf
l3

3!
k +

4	Ds

l
k2� . �12�

The real part of � is the growth rate of the amplitude of
fluctuation. When the real part is positive, the wandering
occurs. If the drift of adatoms is present and the phase shift,

 is finite, the impingement causes the step wandering. Since
the effect of the step stiffness in − is larger than that in +,
the amplitude of the fluctuation with + grows faster than
that with −.

The step wandering with + occurs when fd
 is positive.
If 
 is so small that 
2 is neglected, the wavelength of the
most unstable mode, �max is given by

�max = 2��12	�D1 + D2�
fdf
l2 �1/3

. �13�

The growth rate of the amplitude for the mode, Re +max is
given by

Re +max =
1

8
� fd

4f4
4l11

12	�D1 + D2�
�1/3

. �14�

To study the behavior of unstable step in detail, we carry out
Monte Carlo simulation. We consider a square lattice with
the lattice constant a=1. The steps and the structural bound-
aries are parallel to the x direction on average and the step-
down direction is in the y direction. The boundary condition
is periodic in the x direction and helical in the y direction.

To forbid a step to overlap with a structural boundary, we
take account of the short-range repulsion between a step and
a structural boundary, but neglect the long-range repulsion.
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The steps and the structural boundaries obey the solid-on-
solid condition: The positions of them are given by single-
valued functions of x.

In our model, solid atoms at steps, those at structural
boundaries and adatoms are active. In a trial, we randomly
choose an active atom. If an adatom is chosen, hopping trial
is carried out. When the adatom is on the region with fast
diffusion, the adatom on a site �i , j� hops to �i , j�1� with the
hopping probability D1 /4 and hops to �i�1, j� with the
probability D1�1�Fd /kBT� /4, where Fd is the force to cause
the drift of adatoms. When the adatom is on the region with
slow diffusion, D1 is replaced to D2. The hopping between
the two regions is carried out with the hopping probability on
the upper side region. Except for the hopping probability, the
algorithm is similar to other studies �8–10�. The time in-
crease �t in a hopping trial is �t=1 / �4Na�, where Na is the
number of adatoms. If the adatom attaches to a step �struc-
tural boundary� from a lower side, a solidification trial is
successively carried out. When a solid atom is chosen, a
melting trial is carried out if an adatom is absent on the top
of the solid atom. The probability p+ of solidification and p−
of melting are given by

p� = �1 + exp��Es � 
c

kBT
�−1

, �15�

where �Es is the increase of the step energy and 
c is the
decrease of the chemical potential by solidification. �Es is
given by �Es=�� �the increase of the step perimeter�, where
� is one-half of the step energy. After some diffusion trial,
the impingement of adatoms is tried if the adatom density is
lower than that in equilibrium.

Figure 2 represent snapshots of step wandering without
the difference in the diffusion coefficients during growth.
The diffusion coefficients are D1=D2=1. Parameters are
� /kBT=0.8, 
 /kBT=1.5, and the impingement rate f =1.0
�10−3. The system size is Lx�Ly =512�512. The number
of steps and that of structural boundary is 8. The diffusion
coefficient is D1 in the dark region and D2 in the light region.
In Fig. 2�a�, the drift is absent. The step wandering does not
occur, and the steps and the structural boundaries are straight
with small fluctuation. In Fig. 2�b�, the drift is in the x di-
rection �Fda /2kBT=0.3�. The step wandering occurs, and,
with increasing y coordinate, the wandering pattern is shifted
to the opposite of the drift. Then, fd
 is positive, which
agrees with the linear stability analysis.

Figure 3 represents a snapshot with the difference in the

diffusion coefficient during growth. The diffusion coeffi-
cients are D1=1 and D2=0.3. The other parameters are the
same as those in Fig. 2. With the drift parallel to the x direc-
tion �Fda /2kBT=0.3�, the step wandering occurs. The ampli-
tude of fluctuation of the structural boundary is so small that
the wandering of the structural boundaries does not seem to
occur, which is different from Fig. 2�b�.

From the linear stability analysis, the ratio of the ampli-
tude of the fluctuation of step to that of structural boundary is
determined by parameter �. When D1 is equal to D2, irre-
spective of 
, the amplitude of � is ���=1. When D1 is larger
than D2, ��� increases with increasing 
, and ��� becomes
larger than ���. Thus, the results of simulation are consistent
with the linear analysis.

In this paper, bearing Si�111� vicinal face consisting of
1�1 structure and 7�7 structure in mind, we studied the
possibility of the drift-induced step wandering during
growth. As the difference in the two structures, we took ac-
count of the difference in the diffusion coefficient: The dif-
fusion coefficient on the 1�1 structure is faster than that on
the 7�7 structure. The structural boundary advances with
absorbing adatoms and recedes with releasing atoms, which
is similar to the step. Thus, in our study, we regard a struc-
tural boundary as a step.

From the linear stability analysis, the step wandering oc-
curs when the drift is parallel to the steps. With increasing
the numbering of steps, the wandering pattern is shifted op-
posite to the drift. The amplitude of the fluctuation of struc-
tural boundary is as large as that of steps without the differ-
ence in the diffusion coefficient, but smaller than that of
steps with the difference, which agree with Monte Carlo
simulation.

In the experiment �3�, Hibino and co-workers observed
the step wandering on the Si�111� vicinal face near the struc-
tural transition temperature. The wandering is caused by the
impingement. On the Si�111� vicinal face in other tempera-
ture regimes �12�, the wandering is caused by the drift of
adatoms. Thus, the mechanism of wandering �3� is different
of that in other temperatures. When the current is parallel to
the step, the wandering with the shift of phase 
 occurs.
Since the current and the drift of adatoms are in the same
direction, the product of the drift velocity and the shift of
phase, fd
 is positive, which agrees with our results. How-
ever, in our model, the step wandering does not occur when
the drift is absent, which disagrees with the experiment �3�.
The disagreement is probably caused because we assumed
that the kinetic coefficients are infinite.

If we neglected the difference in the diffusion coefficient,
our model and the model by Liu and co-workers �11� are the

x
y

(b)

FIG. 2. Snapshots without the difference in the diffusion coef-
ficient. The diffusion coefficients are D1=D2=1: �a� without drift
and �b� with drift.

FIG. 3. Snapshots with the difference in the diffusion coeffi-
cient. The diffusion coefficients are D1=1 and D2=0.3.
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same. The relation of the phase of wandering pattern and the
drift direction is the same as that in Ref. �11�. However, in
their model, the wandering occurs without the impingement
of adatoms, which does not agree with our model. The dis-
agreement is also caused by the infinite kinetic coefficient. In
our linear analysis, the step wandering occurs without the
difference in the diffusion coefficient. However, as shown in
Fig. 2�b� and Fig. 3, the wandering pattern is influenced by
the difference in the diffusion coefficient. Thus, the differ-
ence is important in the instability.

Zhao and co-workers �13� also studied the step instability
by the model with two regions. In their model, the diffusion
coefficient in a small region around step is different from that
in a large terrace, and the effect of difference in the diffusion
coefficient is reduced to a finite kinetic coefficient. In our

model, the diffusion coefficient in the lower side of step is
different from that in the upper side. Our model is different
from the model by Zhao and co-workers. Thus, we cannot
simply compare their model with our model. We will study
this with more detail in the future.

In the Si�111� vicinal face, the number of adatoms for the
structural boundary to use to advance is fewer than that at
step, which is probably expressed as the small kinetic coef-
ficient in the step flow model. To compare the analysis with
the experiment in detail, we need to take account of the
effect of the kinetic coefficient.
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